Digestive Physiology and Nutrition in Fish

1

For metabolic function and growth, fish require

- Essential and dispenable amino acids
- Energy-yielding feed ingredients
- Essential fatty acids
- Macro-minerals
- Vitamins
- Trace minerals

Sources of essential amino acids

- EAA from the dietary proteins
- Synthetic amino acids (and analogs)

Sources of dispensable amino acids - Any amino acid from the diet

Sources of essential fatty acids

- Lipids from the diet

Sources of energy

- Carbo-hydrates from the diet
- Lipids from the diet
- Proteins from the diet

Sources of Vitamins

- Vitamines from the diet

Sources of Macro and Trace Minerals

- Minerals from the diet
- Minerals from the water (especially in marine fish)

н н R

н

н

Essential Histidine Isoleucine Leucine Lysine Methionine Phenylalanine Threonine Tryptophan Valine Nonessential Alanine Arginine* Asparagine Aspartic acid Cysteine* Glutamic acid Glutamine* Glycine Ornithine* Proline* Selenocysteine* Serine* Taurine 8 Tyrosine*

alt a Civial GRC Handbook of Chamilatry, v. 2010

speak and the of Reserves.

Upon analysis we generally find 6 different components:

- Water
- Carbohydrates
- Protein
- Fat
- Vitamins
- Minerals and trace elements
- Especially in warm countries a great number of so called antinutrients

Elemental composition and gross and physiological energy content of the three major nutrient classes

	Element	omposition	Energ	gy content
Nutrient	%		Gross	Physiological
			IVIJ KY	IVIJ KY
<u>Protein</u>	C	53	23.86	17.0
	Ν	16		
	0	23		
	н	7		
	S	1		
Fat	С	76	39.0	38.0
	0	12		
	Н	12		
<u>Carbohydrate</u>	С	40	17.4	17.4
	0	53		
	Н	7		

Principle lipid digesting endogenous enzymes of vertebrates

Chitin

- Chitin is a structural polysaccharide found in:
 - Cell walls of bacteria
 - o Fungi
 - o Many invertebrates

- It consists of ß-1.4-linked N-acetyl-D-glucosamine
- Chitinase is absent from the digestive tract of fish that lack a stomach and pyloric Ceca
- Chitinase is found in the gastric mucosa of many fish
- Fish that ingest their prey whole have high chitinolytic enzyme activity
- Fish that are able to disrupt the chitin envelope of the prey have low chitinolytic activity

Localisation of the digestive enzymes of the fish gut, their substrates and the products resulting from their digestive actions

Source site of secretion	Enzyme	Site of action	Substrate	Product
Stomach	Pepsins	Stomach	Protein	Peptides
Pancreas	Trypsin	Intestine	Protein/peptides	Peptides
Pancreas	Chrymotrypsin	Intestine	Protein/peptides	Peptides
Pancreas	Carboxypeptidase	Intestine	Protein/peptides	Amino acids, Peptides
Intestine	Aminopeptidase	Intestine	Protein/peptides	Amino acids, Peptides
Instestine	Di-/tripeptidases	Intestine	Di-/tripeptides	Amino acids
Pancreas	Lipase	Intestine	Triacylglycerols	Fatty acids, Monoacylglycerols
	Esterases	Intestine	Esters	Alcohols, Fatty acids
Pancreas	Amylase	Intestine	Starches	Disaccharides
Intestine	Disaccharides	Intestine	Disaccharides	Monosaccharides
Pancreas and gut microflora	Chitinases	Intestine	Chitin	N-acetyl- glucosamine
Gut microflora	Cellulase	Intestine	Cellulose	Saccharides

III Feed quality and its determination

Cell walls (neutral detergent fibre) Fraction A		gent fibre)	Cell contents (neutral detergent solubles) Fraction B
Non-nutritive matter	Partially nutritive matter		Nutritive matter
Lignin and acid insoluble ash	Cellulose	Hemi- cellulose	Soluble carbohydrate Protein Ether extract Soluble ash

Van Soest detergent system for partitioning the dry matter of food/feed (Harris, 1970 - taken from Javier, 1975)

Feed energy

Feacal collection by sedimentation

Digestibility of feed/food is generally thought to depend mainly on the NATURE of feed/food ingested.

It is generally assumed that digestibilities are almost constant.

In salmonids digestibility of carbohydrate may be substantially affected by the level of intake

Calculation of apparent and true digestibility of nitrogen 1 - F APPARENT protein (N) digestibility (%) = ------ ×100 I - (F - FK) where: I = N intake F = faecal-N output on the the test diet F_{κ} = faecal-N output on a non-protein diet

 F_{K} = 12 mg N kg⁻¹ d⁻¹ on diets without excessive amounts of fibre

Calculation of apparent lipid digestibility

Apparent linid dispatibility (9()	(lipids in feed - lipids in faeces)
Apparent lipid digestibility $(\%) =$	linids in feed

Example: feed consumed 15 g; feed CL 10%; apparent DM digestibility 80%; faeces CL 2%

15 g feed
3 g faeces1.5 g lipids in feed
0.06 g lipids in faecesApparent lipid digestibility = $\frac{(1.5 g - 0.06 g)}{1.5 g} \times 100 = 96\%$

Determination of the apparent feed digestibility using titanium dioxide (TiO₂) as marker

Calculation of the apparent digestibility

Apparent digestibility (%) = (1-
$$(\% \text{ TiO}_2 \text{ feed})$$
) x 100 $(\% \text{ TiO}_2 \text{ faeces / recovery})$

<u>Example</u>: TiO_2 feed = 1%; TiO_2 faeces = 4.5%; recovery = 90%

Apparent digestibility (%) =
$$(1 - \frac{1}{4.5/0.9}) \times 100 = 80\%$$

29

Digestibility of crude protein and content of digestible energy in common protein sources of fish feeds

Feed	Digestibility (%)	DE (MJ/kg DM)
Fishmeal	86	21,2
Soybean, extruded	75	19,4
Fababean, autoclaved	87	11,8
Peas, autoclaved	90	11,3
Soybean, powdered	94	14,4
Corn gluten	87	18,3
Wheat gluten	97	19,6

Digestibility of isolated lipids in fish

Lipid source	Digestibility (%)
Herring oil	99
Sunflower oil	99
Soya oil	99
Flax oil	99

Rectification of essential amino acid deficient plant derived proteins by synthetic amino acid supplements

Effect of r	ct of replacement of casein with synthetic amino acids in fattening diets of carp (Becker, 1985)					
		Protein	Fish ma	ass (g)	Protein and	Energy intake
Proportion Casein/AA	Days on trial	content of diet	initial	final	Protein	Energy
		% DM		iiidi	g kg⁻ ^{0.8} d⁻¹	kJ kg⁻ ^{0.8} d⁻¹
100 : 0	81	34.2	64.7	381	4.9	299
50 : 50	81	33.4	64.6	366	5.0	294
0 : 100	35	32.4	64.9	62.9	4.7	293
25 : 75	46	33.2	62.9	146	5.1	331

Digestibility of starch from untreated and extruded wheat if present in varying proportions in fish feed (n=4)

Nutrient requirement, feed efficiency and feeding systems

Derivation of energy and nutrient requirement: The factorial approach.

The pathways of food/feed energy through animal and human body.

Protein quality and growth performance.

Energy and nutrient availability: Practical example from feeding experiments.

Important criteria with reference to results from feeding experiments.

Feeding techniques and efficiency of growth.

Comparison of proximate composition, energy and mineral content in some fish species with other foodstuffs (related to fresh weight of edible part)

Species	Proxin compos	nate sition	Energy	Minerals	s g kg⁻¹
	Protein %	Fat %	- INIJ/KG -	Са	Р
Salmon	23.0	13	8.9	0.1	0.19
Cod	18.0	1	3.3	0.01	0.20
Carp	15.0	8	6.5	5.7	8.7*
Tilapia	15.5	6	6.9		*
Beef	16.0	34	15.9	-	0.14
Pork	17.0	25	12.5	-	0.20
Egg	13.0	12	6.8	-	-

*Whole body composition

Proportion (%) of body constituents in well fed and starved Fish (Cyprinus carpio L.)

Variation in fish flesh proportion (edible part) of various species

Portion destined for human consumption varies from 25% to 75% of total fish mass. These differences are largely associated with:

- Body shape
- Nutritional condition
- Skeletal characteristics
- Age

	Proportion of e	dible part (%)	
50 – 70%	30 – 40%	20 – 30%	15 – 25%
Species with long trunks and small heads	Species with short trunks and large heads	Most popular carnivorous fish, have intermediate proportions	
• Tunas	Rock fish	Basses	Shrimps
Salmon	Sculpins	Perch	Crabs
Carp		Grouper	Lobster
• Cod		Snapper	
Herring			

• Maximal utilisation (65-80 %) when 50-70 % of the maximum protein retention is achieved

• If maximal protein retention is the target, EAA utilisation drops to 40-60 %

Digestible energy in feed (MJ/kg DM)

Feed conversion and feed lost in faeces depending on energy content of the feed

Requirement for Nitrogen

Utilisation of methionine by trout

Protein conversion parameters

>Protein Efficiency Ratio (PER)

>Productive Protein Value (PPV)

PPV and PER

Protein efficiency ratio (PER)

PER = weight gain (g) / protein intake (g)

Protein productive value (PPV)

PPV = [(final carcass protein – initial carcass protein) / protein feed] x 100

Protein and energy requirement currently recommended for growth in different fish species

Species	Digestible Protein (mg g ⁻¹ DM)	Digestible Energy (kJ g ⁻¹ DM)	Ratio DP/DE (mg Protein kJ ⁻¹ Energy)
Catfish	270 – 244	13.1 – 12.8	19 – 21
Trout	330 - 420	15.1 – 17.2	22 – 25
Common Carp	315	12.1	26
Tilapia	300	11.5	26

Fish generally digest proteins with (apparent) an efficiency exceeding 90%.

Proteins of animal origin are generally more digestible than those of plant origin.

Processing of plant proteins brings about a marked increase in digestibility.

For example, cooking of whole soya bean leads to an increase from 70% to 85%. Treatment effects are due to the destroying of antinutrients and changes in the carbohydrate moity of plant material.

Concentrations of digestible energy (DE) and digestible crude protein (DCP) in dry matter of various ingredients tested in

trout (Pfeffer et al., 1995)

Feed	Proportion in diet	DE (MJ kg⁻¹ ₎	DCP (g kg ⁻¹)
Not influenced by dietary pro	portion		
Wheat gluten	924	21.6	818
Fish oil	210	39.0	
Poultry blood meal	500	20.6	780
Pressure cooked soya beans	500	19.4	362
Influenced by dietary proport	ion		
Poultry offal meal	250 500	18.3 18.3	513 507
Gelatinized corn starch	210 407	21.2 7.2	
Field beans: raw	250 500	7.9 5.9	214 197
Autoclaved	250 500	12.3 10.5	250 242
Field peas: raw	250 500	8.7 7.3	218 210
Autoclaved	250 500	21.1 7.4	230 218

Energy and nutrient availability and consequences for their use efficiency (practical examples from feeding experiments; after Pfeffer, 2003)

